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An investigation was conducted to determine the feasibility of objectively
analyesing digital Doppler radial velocity data at constant altitudes, Data
were supplied by the National Severe Storms laboratory (NSSL) at Norman,
Oklahoma. The study area was & 96 ka by 116 ka box surrounding the Chickasha,
Oklahoma, synoptic network, A computer progras, initially developed by
Greene (1971), modified by Pittman (1976), Sieland (1977), and others was
used as the tasis for this computer program developament, 'rm‘ Teasarch demon~
strated that mesocyclones could be located using constant altitude radial
velocity maps (CAVM) on a 2-ka horizonﬁl and a l-ka vertical grid scale
without correcting for storm motion. However a l-ka horisontal and vertical
&rid scale vas found to be ‘optimun’ for location and study of aesocyclones,
Constant altitude velocity maps (CAVM) were then compared with constant altie-
tude reflectivity maps (CAZM), This comparison, using two different storms,
demonstrated that CAVM analysis was superior to CAZM amalysis for detection

of severe atorm areas,
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ABSTRACT

Digital Doppler Radial Velocity Data Compared Objectivéiy with
Digital Reflectivity Radar Data. (May 1980)
Thomas Foster Beaver, B.S., Grove City College, Pennsylvania

N Chairman of Advisory Committee: Dr. G. L. Huebner, Jr.

: An investigation was conducted to determine the feasibility
of objectively analyzing digital Doppler radial velocity data at
constant altitudes. DataAwere supplied by the National Severe *
Storms Laboratory {NSSL) at Norman, Oklahoma. The study area was
a 96 km by 116 km box surrounding the Chickasha, Oklahoma, synoptic

network. A computer program, initially developed by Greene,(f971),

» + - ...t modified by Pittman (1976), Sieland (1977), and others was used as
| the basis for this computer program development. This research
demonstrated that mesocyclones could be located using constant
altitude radial velocity maps (CAVM) on a 2-km horizontal and a
1-km vertical grid scale without correcting for storm motion.’
However a 1-km horizontal and vertical grid scale was found to
be ‘optimum' for location and study of mesocyclones. Constant
altitude velocity maps (CAVM) were then compared with constant
altitude reflectivity maps (CAZM). This comparison, using two
different storms, demonstrated that CAVM analysis was superior to

CAZM analysis for the detection of severe storm areas.
\ .
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1. INTRODUCTION

Since the very first radar-detected storm was observed on
February 20, 1941, by a 10-cm wavelength radar, weather radar has
advanced to become the meteorologists' best tool for severe storm
detection. Before the development of digitizing units, called
Digital Video Integrator Processors, radar echoes could be analyzed
only subjectively with the analysis dependent totally on operator
skill, training, experience, and motivation (Muench, 1976). Digitized
radar data have increased tremendously the utility of radar data.
Data now can be transmitted rapidly via teletype, archived on
digital tape or disc for later research, or processed directly by
computer to track storms and forecast movement by extrapolation
(Muench, 1976). Substantial research has been done with archived
digital data to define and identify severe weather cells. Greene
(1971) developed a computer program to plot digital radar data
at constant altitudes that he labelled Constant Altitude Reflectivity
Maps (CAZM). These CAZM's were corrected for radar beam bending by
assuming a 4/3 Earth curvature as the beam refraction. He dis-
covered that this type of analysis resulted in a very detailed
three-dimensional picture of the storm. Later researchers such
as Vogel (1973), Pittman (1976), Sieland (1977), and others continued

research on CAZM analysis, each refining and improving the computer

The citations on this and following pages follow the style of
the Journal of Applied Meteorology.




program. Each researcher also tried to develop other techniques
that would use less computer time yet would still be as accurate
as the CAZM. Although new techniques were developed, none could
compare with the detail of the CAZM for post storm research.
Numerous studies have been accomplished and techniques de-
veloped to detect and identify severe cells by conventional reflec-
tivity data; none of them is conclusive. Whiton (1971) prepared an
excellent reference combining many severe thunderstorm studies into
one report. More recently, Lemon (1977) updated Whiton's report
with new information and identification techniques. Some of the
numerous diagnostic reflectivity characteristics include: hook
echoes (Figure 6 shape), V notch, echo protrusions, fingers or
scalloped echo edge, weak echo regions (WER), and bounded weak echo
regions (BWER), to mention but a few. True, these are all indicators
of probable severe weather; but, by the time they are detected, if
they are detected, the severe weather is occurring. It seems that
reflectivity signatures alone cannot conclusively locate severe

weather, especially not tornadoes. By 1970, researchers began using

Doppler radar as a possible severe weather detection tool.




2. BACKGROUND

Doppler radar is defined as that 'class of radar sets which
measures the shift in microwave frequency caused by moving targets'
(Battan, 1973). Doppler radar, then, adds the detection of move-
ment or rotation within the storm itself that is not possible with
conventional, non-coherent radars. It must be realized that the
measured Doppler velocity is really the component of velocity along
the radar radial. Since the moving targets are water drops, the
measured velocity is actually the radial precipitation particle
velocity, more commonly referred to as radial velocity. Doppler
research studies have indicated that significant improvements are
possible in forecasting storm dangers associated with tornadoes,
damaging winds, and turbulence (Donaldson et al., 1975b).

Early displays of radial velocities were denoted as plan shear
indicators (PSI). Armstrong and Donaldson (1969) labelled their
display as PSI because of its capability to detect and locate regions
of strong wind shear from the characteristic arc pattern for sta-
tionary targets. PSI, indicating radial shear as gaps or bunching
in the arcs, is difficult to interpret, while tangential shear,
namely a vortex, is indicated by wrinkles in the arcs. (See Arm-
strong and Donaldson, 1969, for more detail on PSI.) More recent
displays are labelled as multimoment displays (MMD) (Burgess
et al., 1976). Burgess describes this display as a field of

arrows with arrow length proportional to the log of received




power (reflectivity), arrow direction proportional to radial
velocity, and arrow head width proportional to the Doppler Spectrum
also called spectrum width. This display is unique in that it
relates all three Doppler moments at the same time, but it also

can be very easily misinterpreted. It must be remembered that
displayed velocities are radial components of motion and should not
be interpreted as streamlines. Also the spectrum width, velocity
difference, indicated by the arrowhead size is only interpreted up

1

to 3d ms ' with differences greater than this ignored; therefore,

arrow direction must be used to correctly interpret large velocity

differences. (See Burgess et al., 1976 for more detail and displays.)

Both of these displays reveal evidence of cyclonic vortices
associated with severe weather, especially tornadoes.

Well before Doppler radar observations of severe storms, a
cyclonic vortex was known to be associated with tornadoes. As
early as 1949, Brooks identified the so-called tornado cyclone, and
in 1963 Fujita labelled it a mesocyclone (Lemon gg_gl,; ]977{. The
flow in such a mesocyclone has been described by Lemon et al. as
‘most closely resembling that of a Rankine combined vortex...
characterized essentially by two flow regimes' (Fig. 1). The vortex
core is treated as a solidly rotating body, the diameter of this
core being the diameter of a mesocyclone detected by a single
Doppler radar. The center line through the core is the azimuth
along which the radial velocities are perpendicular to the beam,

i.e., zero component of radial velocity. At a radius perpendicular
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FIG. 1. (Top) Horizontal single Doppler radar mesocyclone signature of
a stationary non-divergent Rankine combined vortex.
(Bottom) Velocity profile along the X-Y axis. (After Lemon
et al., 1977).




to the zero radial velocity azimuth, on the right of the solidly
rotating core, there is a closed area of maximum positive radial
velocities. The positive sign indicates a radial component away
from the radar. On the left side of the core there is an area of
maximum negative radial velocities. The negative sign indicates a
radial component toward the radar. It is assumed that the radar is
east of this approaching vortex, and therefore a mesocyclione
(cyclonic vortex) that is east of the radar would have negative
and positive components in reverse of those described above. The
second flow regime is the area outside this solidly rotating core,
and is referred to as the potential vortex flow. Potential vortex
flow is generally at least twice the core diameter (Lemon et al.,
1972).

Early Doppler researchers realized that the only velocity

component measurable by a single Doppler radar was the radial
velocity component. Therefore, they suggested that at least three
radars, measuring the same volume from three different.locations,
were necessary for the unambiguous definition of the vector wind

field within the volume (Donaldson, 1970). However, initial

research with single Doppler radars suggested that a vortex could

be identified by the radial velocity field of a single Doppler radar.
Using the concept of a Rankine combined vortex, Donaldson (1970)
described in detail how a vortex signature could be identified by

a single Doppler radar. The objective criteria described by
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Donaldson have since been used as guidelines for identifying
mesocyclones. He described three primary criteria for a meso-
cyclone: 1) the vortex must be encompassed by a moderately narrow
range of azimuth angles, 2) it must extend through a height com-
parable to its diameter, and 3) it must be persistent. Very
encouraging results have been documented by using these criteria
for mesocyclone detection.

Statistics covering 5 yr of early mesocyclone detection at
the National Severe Storms Laboratory (NSSL) (1970-1975) showed
that approximately 1/10 (37) of all the storms sampled had confirmed
mesocyciones (Lemon et al., 1977). Of these 37 confirmed meso-
cyclones, 23 (62%) were associated with tornadoes and were detected
on the average 36 min before the tornado. In addition, 35 (95%)
produced enough surface damage to qualify the storm as severe. Also
during this period, no tornado was reported that was not preceded
by a mesocyclone. Since this time, interest and research in
Doppler weather radar have increased immensely. The mesocyclone
has been found to be a definite key to the prediction of severe
weather phenomena, especially tornadoes. Although occassional
small, but still damaging, tornadoes have occurred without prior
mesocyclone detection (NOAA, 1979), the diagnosis of the meso-
cyclone has significantly improved the probability of detection,

lowered the false alarm rate, and bettered the critical success

index of severe weather forecasts (Donaldson et al., 1975a).




3. OBJECTIVES

The intent of this study was twofold. The first objective was i
to determine if it was feasible to detect mesocyclones by using
constant altitude mapping of radial velocities. This was done by
designing a computer program similar to that developed by Greene
(1971) and modified by Pittman (1976), Sieland (1977), and others.
Previous studies used conventional radar and therefore had only

reflectivity values to use as a measuring device for the detection

of severe weather echoes. Although this research includes reflec-
tivity values, the principal emphasis is on the use of radial
velocities to locate severe weather by identifying mesocyclones.
The constant altitude maps (CAZM) designed by Greene (1971) are
used in the detection of mesocyclones by radial velocity and
therefore are now labelled constant altitude velocity maps (CAVM).
By realizing that the average mesocyclone is approximately 5.7 km
in diameter and extends vertically approximately 7.5 kni (Lemon

et al., 1977), the 2-km grid scale and 5000 ft vertical increment
used previously have been adjusted to more ‘optimum' scales for
the detection of mesocyclones. The second objective was to compare
reflectivity data and radial velocity data during the same time

frame, at constant altitudes, for a better understanding of the

severe weather echo.




4. THE RADARS USED

The Norman Digital Doppler radar is one of several Doppler

radars operated by NSSL. Some general characteristics of this

radar are shown in Table 1. As earlier noted, the primary advantage

of Doppler radar is that it adds the extra dimension of particle

Table 1. Norman Doppler Radar Characteristics (from Ray et al.,

1977).

General
Wavelength (cm) 10.52
Beanwidth (deg) 0.81
Pulse Length (m) 150
Number of Range Gates 762
Maximum Unambiguous Velocity (m s']) +34.2
Velocity Resolution (m s']) 1
Intensity Resolution (dB) 1.3
Normal Mode
Pulse Repetition Frequency (s']) 1300
Maximum Unambiguous Range (km) 115
Range Increment (m) 150
Expanded Mode
Pulse Repetition Frequency (s'l) 325
Reflectivity Maximum Unambiguous Range (km) 460
Velocity Maximum Unambiguous Range (km) 115
Reflectivity Range Increment (m) 600
Velocity Range Increment (m) 150
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motion to the intensity measurement of conventional radars. However,
this added dimension of radial velocity is also a limiting factor
when designing a Doppler radar. As explained by Battan (1973),

in order to measure the Doppler shift frequency (f), it is necessary
to obtain measurements of phase (¢) over a frequency of at least 2f.
Recall that the pulse-repetition frequency (PRF) is the rate at
which pulses are transmitted; then it is realized that the maximum

Doppler shift frequency detected is

_ PRF
fmax -7 (1

Since the Doppler shift frequency also can be written as

_ v
f=5 (2)

for V equal to the radial velocity, the maximum unambiguous Doppler

Velocity can be written as

- A .
Vioax = (PRF) 7 . (3)
Likewise the maximum unambiguous range (rmax) is
= C
Tmax 1/2 (PRF) (4)

for ¢ equal to the speed of propagation of electromagnetic radia-

8 m s']).

tion (c = 2.998 x 10
By substituting (4) into (3), we express the maximum unambiguous

radial velocity as a function of maximum range,




A
max 8r : (5)

In this format it is clear that there must be a compromise between

v and '

max ax if they are to be measured unambiguously.

For the detection of mesocyclones it is desirable to be able to
measure large radial velocities unambiguously. However, from (5),
this would mean a short range of detection, since c and A are
constant. But, it also is desirable to be able to detect mesocyclones
at long distances. Therefore, both maximum range and maximum
velocity must be compromised to an acceptable mean. In this case,
the Norman Doppler has been compromised to maximum unambigquous radial
velocities of + 34.2 m s'] with a maximum unambiguous range of 115 km
in the normal mode. Data also are collected occasionally in the
expanded mode.

The expanded mode of collection has reflectivity gates every
600 m instead of every 150 m thereby yielding a maximum_reflectivity
range of 460 km. Nevertheless, the radial velocity gate spacing
remains at 150-m intervals and the maximum radial velocity range
at 115 km. For radial velocities, each 115-km increment out to
460 km is called a trip. The recorded radial velocity at any given
gate is assumed to come from the trip that had the maximum reflect-
jvity. For example if the maximum reflectivity is measured at
250 km, when in expanded mode, then the radial velocity for the
corresponding gate is assumed to be the radial velocity component

of the water drops at 250 km. The radial velocity would then come

1
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from the third trip (Bumgarner, 1979). In this way mesocyclones,
and/or radial velocities, are measurable out to 460 km; however,
we cannot be certain which trip these velocities are from and
therefore they are not as dependable as unambiguous velocities
within 115 km when collected in the normal mode. Figure 2, taken
from Ray et al., 1977, shows a diagram of normal and expanded
velocity modes.

A third mode of collection, called high PRF is also available;
however, no data from the high PRF mode were used in this research.
The normal and expanded modes of collection are taken into account
when the data are converted from 7-track to 9-track magnetic tapes,
discussed in Appendix A.

Another point to note about the Normari Doppler radar is its
beamwidth (0.81°). 1In general a beamwidth is defined as twice the
angle between the direction of the maximum power and the direction
at which the power is half the maximum power, i.e., thg so called
half-power point (Battan, 1973). The solid angle, beamwidth,
between the half-power points contains approximately 80% of the
total power. It is obvious that the smaller the beanwidth the
finer the resolution. This is especially critical in the detection
of mesocyclones, which, as noted, have an average diameter of
approximately 5.7 km and are detected by a single Doppler radar as
azimuthally separated velocity peaks of opposite sign (Lemon et al.,
1977). Beamwidths of conventional radars are not nearly as critical

as those for Doppler radars. For example, the Norman WSR-57 radar,
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used initially in this research to compare CAZM's to Doppler CAZM's
and CAVM's, has a beamwidth of 2°. The Norman Doppler then, has a
resolution 2 1/2 times better than the WSR-57. Other general
characteristics of the WSR-57 radar include a 10.4-cm wavelength,

a PRF of only 164 s~

, and a maximum range of 200 km. Further
characteristics and details of the WSR-57 processing technique are

described by Pittman (1976) and Sieland (1977).




5. DATA

Data for this research were collected over the Chickasha,
Oklahoma, synoptic network (Fig. 3) and were supplied by NSSL at
Norman, Oklahoma, on magnetic tapes. These tapes were prepared
from the Norman digital Doppier radar and the Norman WSR-57 digital
radar during the 1977 severe storm season, and in connection with
the Joint Doppler Operational Project (JDOP). The tapes received
were 7-track and contained ‘'raw' data without correction. The
WSR-57 tape was processed by using a program developed by Pittman
and Sieland. But, the Doppler tapes had to be 'unpacked' and loaded
onto 9-track magnetic tapes in Fortran (see Appendix A).

Once corrected to Fortran on 9-track tapes, this author
developed a program to convert the arrays of reflectivity and
radial velocity in spherical coordinates to arrays in cylindrical
coordinates. Finally the arrays were converted to rectangular
arrays, objectively contoured by Conrec, and plotted by the Versatec
plotter. The conversion to cylindrical and rectangular coordinates
was primarily the same as that described by Sieland (1977) and
employed a linear quadratic interpolation scheme. However, instead
of using 5000-ft increments as Sieland did, this author converted to
1-km height increments for even finer vertical detail, and also to
keep all units consistent. Also, it was fett that Sieland's so-
called surface map was misleading since it only used data along one

tilt angle with no correction for beam bending. Therefore this

15
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author opted not to plot a single elevation angle map but rather to
plot the lowest available constant-height interpolated map. This
Towest available map is a function of fhe lowest tilt angle and

the horizontal distance to the data of interest. For example, if we

use the equation from the program

tan”! ¢ = %-- —éf’ (1)

where ¢ is the tile angle, H is the vertical height of the constant-
altitude cylindrical array (km), X is the horizontal distance of
interest (km), and RP2 is 2 times the 4/3 Earth curvature correction

(km) (Greene, 1971). The solution of (1) for H is

1

H=(tan”! ¢ + R-éf) X. (2)

Then let us assume that

¢ = 0.2°
X =95 km
RP2 = 16990.173 km (constant).

We find that H equals 0.863 km. Therefore, the lTowest available map
would be approximately 0.9 km with no data available beyond 95 km.
Likewise this equation is used to determine the closest data
available at the highest constant-altitude mapping by using the
highest tilt angle.

After conversion to a rectangular array, each map is stored on
a disc file and then used by the 'Conrec' program for an objectively

contoured map. Details of the Conrec procedure are documented

17
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by Neyland (1978). This author's plotting procedure includes some
revisions to Neyland's procedure, as is noted in Appendix B.

The main area of change going from conventional data to Doppler
data involved converting the enormous amount of data, 762 gates
along each radial versus 200 gates, with not only reflectivity data
but also radial velocity and spectrum widths, into accurate values
without losing or over-smoothing the data. Initially, data were
processed using every sixth gate (900 m). This procedure was tried
because it was comparable to earlier research using 1-km spherical
array points as the basis for conversion to cylindrical and rectan-
gular coordinates. Also this appeared to be the most direct way
to process the data without significant modification to previous pro-
grams. Secondly, a slightly more sophisticated approach was attempted
by searching for the closest 150-m gate to each kilometer point along
the radial, and using that gate in the spherical array. Although
both these procedures produced seemingly accurate resu}ts, comparabie
to conventional data schemes, only approximately 15% of the data
along each radial were being used. In order to use more of the
available data, a linear averaging technique was designed. This
technique averaged data across the seven 150-m gates closest to
each kilometer. However, inclusion of practically all the data
still was not satisfactory, since the averaged value could easily
be biased by values on either side of the kilometer point. Biased
values would then give false images of the actual reflectivity or

radial velocity patterns. Finally it was determined that the most




accurate averaging technique would be to use a radius-of-influence
average along each radial.

Radius-of-influence averaging is similar to Gaussian normal-
ization. A 450-m radius-of-influence was selected. This radius
allows practically all the data to be used without any overlapping
of data points. A minimum of six or a maximum of seven gates are
used in this averaging technique. Each gate is weighted according
to its distance from the kilometer point. A gate at the kilometer
point has a weighting value of one, while a gate 450 m from the
kilometer point has a weighting value of 0.05. The value of
reflectivity, or radial velocity, at each point is multiplied by
the weighting value of that gate. Then the weighted sum of the six
or seven gates is divided by the sum of the weights to determine
the value for the kilometer point. To attain even greater accuracy,
a consideration was given to the use of a radius-of-influence
averaging across the radials. However, from simple trigonometry
it is realized immediately that a 450-m separation of 1-deg radials
occd;s only out to approximately 26 km. Since the primary area
of interest for this research deals with areas much farther away
than 26 km, it was not feasible to add averaging across radials.

The next major change involved a correction for folding of
radial velocities. Folding is assumed to occur when the gate-to-gate
difference of radial velocity is greater than 34 m s'] (Burgess
et al., 1976). Recall from Table 1 that the maximum unambiguous

velocity is +34.2 m s']; however, the maximum velocity recorded

19
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1

is+34 ms . !

Then, if the actual radial component is -40 m s~
(toward the radar), it would not be recorded as -40 m s'] but rather

as a lesser positive value. This recording of velocities greater

1

than +34 m s~ as lesser numbers of opposite sign is called folding.

To find the actual velocity, prior to averaging, requires that the
folded velocity be corrected. Initially it is assumed that the very
first gate is not a folded value. This is normally a good assump-
tion unless there happens to be a tornado, or mesocyclone, directly
over the first gate. If the absolute difference of gate 1 minus gate

& 2 is less than 34, no folding has occurred. Gate 3 is then sub- |

tracted from gate 2, and so forth, until an absolute difference

greater than or equal to 34 is found. Now assume that gate 590

has an unfolded value of -32 m s'] and gate 591 a value of +28 m s'].

The absolute difference (/-32-(428)/) is 60; therefore, gate 591
is a folded value. The actual value of gate 591 is found by
multiplying 2 times the maximum unambiguous velocity usjng the
algebraic sign of the unfolded gate, namely gate 590, and then
adding the folded value.
Z(Vmax) + Folded Velocity = Actual Velocity
2(-34) + 28 = -40
Negative 40 m s'] is then the actual value of gate 591, and this
value is used in the radius-of-influence averaging. Gate 590 is

then kept as the gate to compare with gate 592, and so forth, until

no further folding occurs (see Appendix B). A1l gates along each

radial are checked and corrected for folding prior to any radius-of-
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influence averaging. Some implied assumptions, due to the limited

"maximum unambiguous velocity, are that the radial component of

1

gate-to-gate shear will not exceed 34 m s,

velocity will not be greater than +68 m s™ ', and, that the maximum
The final adjustment was necessary due to the antenna rotation.
Initially, it was assumed that the antenna would be in record mode
only when rotating in a clockwise direction. This assumption was
soon misproven. In order to get as much information as possible on
a mesocyclone in a short period of time, the operators at NSSL, at
times, recorded data both clockwise and counterclockwise over a
small number of azimuth angles (sector scanning). By doing this,
data were not always collected at 1° increments. Therefore numerous
checks had to be added to the computer program in an attempt to
cover all data collections, including different directions and rates
of rotation. Due to the variable azimuth separations, it was
decided to use azimuths at approximately 1° separations. Checks
were added to compare two azimuths at a time, find the one closest
to the predetermined integer azimuth, compare this closest azimuth
to the next read azimuth to finally locate the closest azimuth to
the integer value. This Qay when different tilts are used for the
cylindrical averaging conversion, the compared azimuth angles will
be at least within a few tenths of a degree to each other. Never-
theless, there are some exceptions. Occasionally an azimuth may
have been determined to be inaccurate during the conversion from

7-track to 9-track and was therefore noted as a 999 azimuth and




omitted. Alsof an integer value azimuth may be skipped, in rare
cases. In these instances, instead of averaging in false zero
values, the missing azimuths are assigned values exactly the same

as the previously processed azimuth. This technique results in

much better averaging than would accrue from use of a false zero
value in the middle of an echo. (See Appendix B for further details

of the actual computer program used in this research.)
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6. RESULTS

The primary emphasis of this research was to determine if it
was feasible to detect mesocyclones by using constant altitude
mappings of radial velocities (CAVM). If this was feasible, what
horizontal and vertical scales provided ‘optimum' detection over a
relatively large area, approximately 50 km by 50 km? How do constant
altitude reflectivity maps (CAZM) compare with CAVMs for severe
weather features?

Two severe storms were chosen for this research. On May 1,
1977, at 1810 CDT (02/0110 GMT), NSSL identified a weak mesocyclone
along the 252° radial at 62 km with a diameter of 3.3 km (Burgess,
et al., 1977). No tornadoes were observed although large hail
was reported between 1815 CDT and 1850 CDT, thereby calling for
classification as severe. The second storm that was analyzed was
detected on May 20, 1977, along the 262° radial at 95 km with a
diameter of 3.3 km at 1641 CDT (2341 GMT). This storm met the
criteria for a strong mesocyclone and was, in fact, identifiéd as
a tornado vortex signature (TVS). Brown and Lemon, 1976, describe
a TVS as:

(1) An area of azimuthal shear of at least 15 to 20 m s']
over an azimuthal range of 1° or less (approximately 1 beamwidth).

(2) A cyclonic signature with peak Doppler velocity values
of opposite sign.

(3) Anomalous shear region of not more than approximately

1-km range extent.




(4) A shear region at least a few kilometers in vertical
extent.

(5) A persistent anomalous shear region at the same general
heights for approximately 10 min or more. A
Since these two storms occupy the two limits of the mesocyclone
spectrum, it was felt they would make good test cases for this

research.

a. May 1, 1977 Mesocyclone

Available radar data on this day include sets from both the
WSR-57 and the Norman Doppler. Because WSR-57 data had been
successfully analyzed by previous researchers, these data were
processed initially and used as a check for the new Doppler process-
ing scheme. The WSR-57 radar data were processed on the 96 km
by 116 km Chickasha grid with 2-km horizontal spacings and 1-km
vertical intervals. This produced CAZM's similar to those produced
by Sieland (1977). Processing of data began 30 min prfor to the
report of the mesocyclone since Doppler velocity profiles have been
shown to be able to detect mesocyclones at mid-levels approximately
30 min to 1 h prior to surface disturbances (Lemon et al., 1977).
The Norman Doppler data were then processed over the same grid
area and the same horizontal and vertical scales. Although the
recording times and the antenna locations of the two radars were
not exactly the same, they were close enough to use as a check to

ensure accuracy of the new processing scheme.
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In all of the figures dealing with this case, CAZM isopleths
of reflectivity start with 15 dBZ and are incremented every 10 dBZ.
Also, all maps have a line with a point marked on it indicating
the location of the mesocyclone (262° at 62 km). The first sequence
of data, recorded from 1740 CDT to 1743 CDT by WSR-57 radar, shows
a maximum core of 45 dBZ vertically stacked from 1 km through 9 km,
then decreasing to 35 dBZ at 10 km (Figs. 4 to 7). Doppler radar
CAZIM's collected between 1742 CDT and 1748 CDT indicated patterns
very much like those from the WSR-57 radar data. This assured
that the new processing scheme, with its numerous checks and radius-
of-influence averaging, was processing the Doppler data accurately.
While the WSR-57 data were collected to a maximum tilt angle of 13°,
the Doppler radar data, up to the time of mesocyclone, were collected
only to a maximum tilt angle of 5.1°. Therefore, the highest
available CAZM and CAVM analyses of Doppler data were only to 5 km,
whereas WSR-57 CAZM's could be processed to higher altitudes. Note
that Figs. 4 through 7 indicate no obvious severe weather features
other than a high reflectivity core.

Constant altitude velocity maps (CAVM) were processed with the
same grid criteria. Isopleths of radial velocity, isodops, were

1

analyzed in meters per second at 5-m s ' intervals. In the following

figures, dashed lines indicate radial components toward the radar
(negative), while solid lines represent radial component flow away

1

from the radar (positive). The zero line (0-m s~ ' isodop) represents

zero radial component or all flow perpendicular to the beam. Storm
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motion was not removed from the data. Therefore it is natural for
radial velocities west of the radar to have higher negative components
than positive. These components can be balanced closely by accounting
for cell motion; this was tested. However, accounting for individual
cell motion resulted in inaccurate values over the remainder of grid
box and, in fact, even indicated 'false' mesocyclone and convergent
areas. The method tested was a cosine function correction assuming
one movement for the entire grid box. In addition numerous cosine
function corrections were tested for a small area surrounding the
mesocyclone center. These also resulted in 'false' isodops,
especially near the edge of the corrected area. It was determined
that, although storm motion correction would tend to balance the
negative and positive components for a small area, no single
solution could be accurate for the entire grid box. Likewise,
since storm motion correction would not change the location of the
vortex, but only balance the components, it was deemed inadvisable
to use storm motion correction.

The first series of CAVM analyses is for the time period of
1742 CDT to 1748 CDT. Figure 8 shows the 1-km CAVM. Both the 1-km

and 2-km heights indicated little more than the 0-m 57!

isodops,
i.e., few components toward or away from the radar greater than
5m s']. However at 3 km and 4 km a definite area of convergence
is noted (Figs. 9 and 10). Although neither the reflectivity nor

radial velocity analyses at this time indicate any definitive
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9, g-km CAVM, 1742-1748 CDT, 1 May 1977 (2-km grid), Doppler
ata.
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FIG. 10. 4-km CAVM, 1742-1748 CDT, 1 May 1977 (2-km grid), Doppler
data. .




severe weather features, at least the CAVM analysis indicates the
probable severe weather area.

Between 1750 CDT and 1805 CDT two more sequences of WSR-57 radar
data were recorded, but no Doppler radar data were collected. The
1750-1753 CDT sequence shows a slight southeast movement had occurred
of the 45-dBZ core, which now extends only to 6 km (Fig. 11). Figure
12, 8-km CAZM, indicates an indentation of the 25-dBZ and 35-dBZ
isopleths which might be interpreted as the beginning of a weak
echo region (WER). By 1800 CDT the 45-dBZ core has elongated,
and again a very slight east-southeast movement is detected at
all levels. The 45-dBZ core split into two distinct cells at the
2-, 3- (Fig. 13), and again at 10-km heights. (For further details
on the aspects of this splitting storm see Bluestein and Sohl, 1979.)
During this 15-min time period the reflectivity data indicated that
the storm moved east-southeast such that the largest 45-dBZ core
of the 3-km CAZM (Fig. 13) is located directly within the area of
convergence noted on the 3-km CAVM at 1748 CDT (Fig. 9). Still,
the only reflectivity feature of severe weather is the intensity
of the core and the indication of a split.

The second series of Doppler radar data was recorded between
1805 CDT and 1812 CDT. Again the lowest CAVM's indicated nothing
more than the 0-m s'] isodops, whereas the 3-km CAVM (Fig. 14)

1

indicates that the -5 m s~ ' field has shifted to the southeast and

1

the 0-m s~

isodop is parallel to the 252° azimuth at 62 km, but

34
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FIG. 11. 6-km CAZM, 1750-1753 CDT, 1 May 1977 (2-km grid), WSR-57
data. .
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12. 8-km CAIM, 1750-1753 COT, 1 May 1977 (2-km grid), WSR-57
data.
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no positive area of at least 5 m s'] is indicated. Recall from
Figure 1 that a mesocyclone must have negative and positive isodops

on either side of an azimuth with the O-m s~

isodop parallel to

the azimuth. Figures 15 and 16 then indicate suspected cyclonic
rotation at 4 km and 5 km, but still no 5-m s isodop is detected.
Since this was a weak mesocyclone having a diameter of 3.3 km, and
storm motion was not accounted for, it seems likely that the cyclonic
vortex may not be detectable on a 2-km horizontal grid. Nevertheless,
an area of convergence,which now suspiciously resembles cyclonic

flow, was noted as early as 22 min before mesocyclone detection.

With this grid scale, the 1-km vertical spacing proved sufficient
to deteét sustained cyclonic flow through a vertical height at least
as great as its horizontal diameter. On the other hand, with a
vertical grid spaéing of 1.5 km (approximately 5000 ft as in previous
research), the presumed cyclonic rotation was detectable only at
3 km and 4.5 km and therefore was not able to detect this small
mesocyclone. The 1-km vertical interval therefore was selected as
the 'optimum' vertical scale. Only suspected cyclonic flow could
be inferred on the 2-km horizontal grid, which was felt to be
inadequate. Therefore, an adjustment was made to use a 1-km
horizontal grid spacing over an area of 49 km by 59 km, or half
of the 2-km grid box, and nearly centered on the mesocyclone area.

The following results were obtained from processing Doppler

radar data only on the new 1-km horizontal and vertical scales.

39
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FIG. 15. 4-km CAVM, 1805-1812 CDT, 1 May 1977 (2-km grid), Doppler
data.
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16. 5-km CAVM, 1805-1812 CDT, 1 May 1977 (2-km grid), Doppler
data. :
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As early as 1730 CDT, from a collection made from 1724 CDT to 1730
CDT, an area of convergence was detected at 3-km and 4-km heights,
approximately 4-km north-northwest of the future mesocyclone site
(Figs. 17 and 18). Figures 19 and 20 are for the same time as
Figs. 9 and 10 but now on a 1-km horizontal grid. The convergence
area is much more obvious. From comparison of Figs. 21-23 with
Figs. 14-16, the cyclonic flow is highly suspected but still there
are no positive isodops. Figures 21-23 do, however, indicate a

1

radial component of at least 10 m s~ at 3 km not detected by the

1 isodop at 4 km that was not detected.

2-km grid and also a 15-m s~
Since there were still no positive isodops, a special 450-m grid
scheme was used to process a small area of data around the meso-
cyclone for this time sequence. The analysis was output as
numerical values for each 450-m point and did in fact show an area

1 isodop at all three levels.

1

of positive values within the O-m s~

At 3 km, the maximum positive values were 4 m s~ ', while at 4 km

! was found but only at two

and 5 km, a maximum value of 5m s~
consecutive gates and therefore was not indicated on a 1-km grid
spacing. It was determined that the 450-m grid spacing would

result in excellent detailed mappings of an individual mesocyclone.
However, the limited 450-m grid box was considered too small for
the initial location of mesocyclones over a sufficiently large area.

It also is possible to decrease the isodop interval which was tested

but negative isodop bunching results. Therefore the 1-km horizontal
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FIG. 17. 3-km CAVM, 1724-1730 CDT, 1 May 1977 (1-km grid), Doppler
data.
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data. ;
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and vertical grid spacings with 5 m s

interval isodops were accepted
as the 'optimum' scales.

This T-km horizontal grid also resulted in much more detailed
CAIM analyses. The 1-km CAZM, Fig. 24 compared to Fig. 4, indicates
a maximum core of 55 dBZ and a sharp indentation of the 45-dBZ isopleth
just north of the future mesocyclone location. This WER is directly
under the area of convergence noted in Figs. 19 and 20. This also
was indicated on the 2-km CAZM but was not as sharp. The 3-km CAIM
indicates this WER as filling still more while the 55-dBZ core
is larger with an eastward growth. At this time a WER is seen to
the northeast of the core (Fig. 25). At 4 km, the southern WER has
disappea}ed and the region northeast of the core is persistent (Fig.
26). Even with greater detail, it is difficult to forecast where
the maximum activity will develop while using only the reflectivity
values. Then, at the time of mesocyclone detection, the 55-dBZ
core on the 1-km CAZM is located with its southern edge at the meso-
cyclone location (Fig. 27). The 45-dBZ isopleth has split. While
the southern cell is stacked vertically, the northern core tilts
rapidly eastward (Fig. 28) and disappears at 5 km. The 55-dBZ
core increases in size with height and elongates, thereby indicating
a westward tilt with height (Fig. 29).

In this case the mesocyclone never reached the surface, and

no tornadoes were reported. Why some mesocyclones propagate to
the surface while others remain aloft is still a major question that

must be studied. A much more detailed analysis was evident with
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FIG. 24. 1-km CAZM, 1742-1746 CDT, 1 May 1977 (1-km grid), Doppler
data.
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25. 3-km CAZM, 1742-1746 CDT, 1 May 1977 (1-km grid), Doppler
data.
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4-km CAZM, 1974-1976 CDT, 1 May 1977 (1-km grid), Doppler
data.
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27. 1-km CAZM, 1805-1812 CDT, 1 May 1977 (1-km grid), Doppler
data.
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the 1-km scale, thus indicating many features that were not readily
evident on the 2-km scale, yet still covering a sufficiently large
area of 49 km by 59 km. Likewise CAVM analyses seem to indicate

probable areas of severe weather much more readily than CAZM analyses.

b. May 20, 1977 Mesocyclone

Since the 1-km horizontal and vertical scales were found to be
‘optimum' for the May 1, 1977, mesocyclone, these scales were used
for the May 20, 1977, analysis. As in the previous figures, isopleths
of reflectivity begin at 15 dBZ with 10-dBZ increments, and
isodops are processed at 5 m s'] intervals. The line indicates the
azimuth and distance of the mesocyclone (252° at 95 km). The
earliest data processed were obtained from 1627 CDT until 1631 CDT.
During this time period data were collected beginning with the 3.9°
tilt angle, thus restricting the lowest possible map level to
7 km, with data processed out to only 95 km (Fig. 30). Therefore,

the 0-m s~

isodop of Fig. 30 is not the back edge of the storm

but only the edge of available data for the 7-km CAVM. CAVM's

were analyzed up to 12 km, and they all indicated strong negative
component flow with no hint of any cyclonic rotation. It is felt
that, at these heights, the upper-level winds dominate the flow
pattern and that any mesocyclone formation features would have

been indicated at lower levels. In addition, CAZM analysis indicated

no significant severe weather features at these heights. It was

suspected that a WER or BWER would be detected. However, none was

e
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30. 7-km CAVM, 1627-1631 CDT, 20 May 1977 (1-km grid), Doppler
data.




found. Figure 31 represents the typical type of reflectivity analysis
for this time period. The 45-dBZ core was stacked from 8 km through
11 km as the strongest area of reflectivity.

One of the best sequences of data was collected between 1634
CDT and 1640 CDT, when tilt angles were recorded from 0.2° through
10.8° at approximately 0.5° increments. The analyses for this time
sequence consist of maps from 1- to 11-km heights. A very broad
area of cyclonic circulation is indicated from 1- to 5-km heights
(Figs. 32 to 33) with suspected cyclonic flow up to 7-km (Fig. 34).

By 8 km the upper-level winds again dominate and no O-m s']

isodop
or positive isodops are indicated. This tends to support the analysis
of the éar]ier series of data from which it was inferred that the
upper-level winds dominated the 7- to 12-km CAVM's. The reflectivity
analyses show the 45-dBZ area to have propagated well northward,
and on the 2-km CAZM there is a suspicious appendage to the 45-dBZ
isopleth (Fig. 35). On the 3-km CAZM, a small 55-dBZ core was
found 5 km northwest of the future mesocyclone point. This 55-dBZ
core was found to expand and extend vertically to the 5-km CAZM
(Fig. 36). Then at 7 km (Fig. 37), the 45-dBZ core splits and
extends through the 11-km CAZM, while decreasing in size with
height (Fig. 38). Again, no WER or BWER was obvious.

Finally, during the reported mesocyclone sequence, data were
collected between 1640 CDT and 1643 CDT from 0.2° through 5.8° tilt

angles. The previously-noted cyclonic rotation area decreased

drastically in size while increasing in intensity. At this point
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10-km CAZM, 1627-1631 CDT, 20 May 1977 (1-km grid), Doppler
data.
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1-km CAVM, 1634-1640 CDT, 20 May 1977 (1-km grid), Doppler
data.
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33.

5-km CAVM, 1634-1640 CDT, 20 May 1977 (1-km grid), Doppler
data.
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35. 2-km CAZM, 1634-1640 CDT, 20 May 1977 (1-km grid), Doppler

data.
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11-km CAZM, 1634-1640 CDT, 20 May 1977 (1-km grid), Doppler
data.
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the mesocyclone is detected. Strong cyclonic shear is indicated
from 1 through 3 km with radial velocities changing as much as
40 m s'] along a 1-km distance normal to the radar beam on the 1-km

CAVM (Fig. 39). Donaldson et al. (1975) found that 20 m s']

shear
over a 1-km distance normal to the radar beam proved to be an
excellent indicator for identifying severe storms. Figures 39 and
40 show the tornado vortex signature (TVS) tilted to the south at
2 km, while adding Fig. 41 shows a rapid curvature back to the north.
By the 4- and 5-km CAVM heights, cyclonic rotation has broadened
while the tornado still tilts northward (Figs. 42 and 43). Above
6 km, the cyclonic circulation continues to broaden and decrease in
intensify with no positive isodops indicated on the 8-km CAVM. The
TVS is very obvious in the low levels and readily pinpoints the
tornado location. On the other hand, reflectivity data indicated a
hook echo (Burgess et al., 1977). This is best identified at the
2-km CAZM as a sharp-pointed appendage of the 45-dBZ isopleth (Figq.
44). The strongest isopleth, 55 dBZ, is located about 7 km north of
the TVS and extends through the 5-km CAZM.

Since this storm was so much stronger than the May 1, 1977,
mesocyclone, the data also were analyzed on the 2-km grid during
the TVS time sequence. Figure 45 shows that the TVS was still very
obvious at 2 km; it was just as obvious on the 1- and 3-km CAVM's,
Cycionic rotation was easily detectable through the 5-km CAVM but

1

only a 0-m s ' ijsodop and suspected rotation was evident at 6

through 8 km. However, the sharp-pointed appendage seen on Fig. 44
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3-km CAVM, 1640-1643 CDT, 20 May 1977 (1-km grid), Doppler

data.

FIG. 41.
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data.
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data.
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was not nearly as evident on the 2-km CAIM with a 2-km grid scale
(Fig. 46). Again, the radial velocity analysis not only readily
identified the location of the severe storm but did so at more
altitude levels than did the reflectivity analysis. In addition,
although the 1-km grid had better resolution, the TVS was

still locatable on the 2-km CAVM grid; however, the sharp reflectivity

appendage was not noted on the 2-km CAZM grid.

he e g . "
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data. ,




7. CONCLUSIONS

The objectives of this research were two-fold: The first
objective was to determine if it was feasible to detect mesocyclones
by using constant-altitude mappings of radial velocities, and if it
was feasible then to determine the 'optimum' map scales. The
second objective was to compare radial velocity features with
simultaneous reflectivity features of at least one severe storm.
Actually two severe storms were analyzed and the following conclusions
are drawn.

It was determined that mesocyclunes, including both weak and
tornadic mesocyclones, were, in fact, readily detectable on constant-
a]titudé maps. These constant-altitude velocity maps (CAVM) were
constructed by first correcting the folded velocity values, then
finding the recorded azimuth closest to its integral value azimuth
and using a 450-m radius-of-influence averaging technique along
the radial to calculate values for each kilometer point. When all
of the radials within the grid box were calculated in this manner
for all tiit angles, the data, in spherical coordinates, were
converted to cylindrical coordinates at constant heights. Finally,
by use of a quadratic linear interpolating scheme (Sieland, 1977),
the data in cylindrical coordinates were transferred to rectanquair
coordinates and objectively analyzed by the 'Conrec' computer routine.
The ‘optimum' vertical interval was determined to be 1 km. A 1-km
vertical interval was required since by definition a mesocyclone

must have a vertical extent comparable to its horizontal diameter,
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and, by using a larger increment such as 1.5 km, the vertical
structure of cyclonic rotation may not be detectable for small
mesocyclones.

Initially a 2-km horizontal grid scale was used and in both
cases the cyclonic vortex was identified. This proved that a 2-km
horizontal grid scale was adequate for the initial detection of even
small mesocyclones. However the 2-km grid scale lacked the detail
necessary to study the radial velocity fields. Therefore, both a
450-m and a 1-km scale were tested. While the 450-m scale was
very detailed, it lacked sufficient range dimensions. Consequently,
a 1-km horizontal scale was selected as 'optimum', thereby giving
both defai] and sufficient range dimensions, 49 km by 59 km, to
locate and study velocity fields in comparison to reflectivity
fields.

From a review of both reflectivity and radial velocity analyses,
it was found that radial velocities located severe storms much more
readily and much earlier than reflectivity analyses. Even on a 1-km
CAZM grid, severe storm reflectivity features could neither be
readily nor definitively pinpointed, whereas the radial velocity
displays left little doubt as to the location of probable severe
storms. Likewise CAVM analyses indicated convergence or cyclonic
rotation at consecutive heights, while reflectivity analyses were
hit-and-miss from one height to the next. Unfortunately, neither

of the storms analyzed had enough continuous data from 1-km through

at least 10-km heights to reach any conclusions on the relationships
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of WER, BWER, etc., to convergence or cyclonic rotational areas.
The final conclusion is that radial velocities can be analyzed

from constant-altitude maps, and they in fact do locate severe

storms much more quickly and more precisely than constant-altitude

reflectivity analyses.
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8. RECOMMENDATIONS

The following recommendations are suggested which could be

based upon the computer technique used in this study to analyze radial

velocity and reflectivity fields from Doppler radar data.

(1)

(3)

(5)

(6)

Analyses of several mesocyclones with tilt sequences
capable of producing constant altitude maps from at
least 1- through 10-km heights should be studied. The
study should attempt to relate severe storm reflectivity
features with radial velocity features for a better
understanding of severe storm structure.

Hail storms should be studied to determine if there are
any radial velocity signatures that imply or identify
hail storms and not tornadoes.

Numerous cases should be studied where mesocyclones are
detected at Tow-to mid-levels but do not propagate to
the surface. This study should attempt to determine why
these mesocyclones do not reach the surface.

A comparison should be made between the radial velocity
shear at various levels and the resultant intensity of
surface wind reports.

Criteria should be established for turbulence forecasts at
various levels and areas of extent from CAVM analyses.
Radial velocity fields should be compared with surface

precipitation to determine if precipitation rates or amounts

are predictable from radial velocities.

R



The following recomiendations involve the development of more
sophisticated computer programs while using the technique of this
study as a starting point.

(1) Develop a computer program to calculate the maximum
tangential velocity of a mesocyclone by using a Rankine
combined vortex model.

(2) Develop an advanced computer program capable of locating
and tracking mesocyclones, and process mesocyclone CAVM

analyses for real time use.
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APPENDIX A

This appendix gives a brief description of the 7-track to 9-

track conversion of the ‘raw' Doppler tapes received from NSSL.

. A computer program to ‘'unpack' the tapes was developed by
Knight and Howell (1980) at Texas A&M University. Their program
use; the calibration data, supplied by NSSL with each set of tapes,
to properly calibrate the 'raw' data when processed onto 9-track
tapes. In addition, the program is designed to convert both normal
and expanded mode data. However, since the primary research area
was over the Chickasha synoptic network (Fig. 3), only data out to
the first trip (115-km) were written onto 9-track tapes. Expanded
mode data are written in 150-m increments by assigning the 600-m gate
values to the three previous 150-m gates. Each ‘raw’' data tape is
loaded onto two 9-track tapes in the following format: a header
consisting of the year, Julian date, beginning and ending time,
beginning and ending azimuth angles, lowest and highest tilt angles,
plus the number of scans (revolutions), is written at the start of
each sequence of data. Each radial in the sequence consists of a
time, azimuth angle, elevation angle, 762 values of reflectivity
corrected to dBZ, 762 values of radial velocity in m s (not
corrected for folding), and 762 values of spectrum width in m s'].
Spectrum width data were not used in this research. In addition,
a pound sign (#) precedes each header to identify the start of a

new tilt sequence. Further information on this program is noted




in the comments of Appendix B. A copy of this program is obtainable
from either co-author, or from Dr. Glen Williams, Industrial Engineer-

ing Department, or from Dr. George Huebner, Meteorology Department,

at Texas A&M University.




APPENDIX B

This appendix contains a commented copy of the computer pro-
gram that was used to process the Norman Doppler digital radar
data. The program is used after the raw 7-track tapes are converted
to 9-track by using the program written by Dave Howell and Keith
Knight.
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